Discrete Newton's Algorithm for Parametric Submodular Function Minimization

نویسندگان

  • Michel X. Goemans
  • Swati Gupta
  • Patrick Jaillet
چکیده

We consider the line search problem in a submodular polytope P (f) ⊆ R: Given an arbitrary a ∈ R and x0 ∈ P (f), compute max{δ : x0 + δa ∈ P (f)}. The use of the discrete Newton’s algorithm for this line search problem is very natural, but no strongly polynomial bound on its number of iterations was known [Iwata, 2008]. We solve this open problem by providing a quadratic bound of n + O(n log n) on its number of iterations. Our result considerably improves upon the only other known strongly polynomial time algorithm, which is based on Megiddo’s parametric search framework and which requires Õ(n) submodular function minimizations [Nagano, 2007]. As a by-product of our study, we prove (tight) bounds on the length of chains of ring families and geometrically increasing sequences of sets, which might be of independent interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A push-relabel framework for submodular function minimization and applications to parametric optimization

Recently, the first combinatorial strongly polynomial algorithms for submodular function minimization have been devised independently by Iwata, Fleischer, and Fujishige and by Schrijver. In this paper, we improve the running time of Schrijver’s algorithm by designing a push-relabel framework for submodular function minimization (SFM). We also extend this algorithm to carry out parametric minimi...

متن کامل

A strongly polynomial algorithm for line search in submodular polyhedra

A submodular polyhedron is a polyhedron associated with a submodular function. This paper presents a strongly polynomial time algorithm for line search in submodular polyhedra with the aid of a fully combinatorial algorithm for submodular function minimization. The algorithm is based on the parametric search method proposed by Megiddo.

متن کامل

Submodular Function Minimization and Maximization in Discrete Convex Analysis

This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS A Strongly Polynomial Algorithm for Line Search in Submodular Polyhedra

A submodular polyhedron is a polyhedron associated with a submodular function. This paper presents a strongly polynomial time algorithm for line search in submodular polyhedra with the aid of a fully combinatorial algorithm for submodular function minimization as a subroutine. The algorithm is based on the parametric search method proposed by Megiddo.

متن کامل

Joint M-Best-Diverse Labelings as a Parametric Submodular Minimization

We consider the problem of jointly inferring the M -best diverse labelings for a binary (high-order) submodular energy of a graphical model. Recently, it was shown that this problem can be solved to a global optimum, for many practically interesting diversity measures. It was noted that the labelings are, so-called, nested. This nestedness property also holds for labelings of a class of paramet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017